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Averaging Rules for the Scattering by
Randomly Oriented Chiral Particles

Gerald Oberschmidt and Arne F. Jacob

Abstract—The orientational averages arising when calculating the
effective behavior of ensembles ot’ randomly dispersed (chiral) particles
are examined. Two methods, i.e., the vector radiative transfer equation
(VRTE) and the Lorenz-Lorenti mixing formulas, are briefly discussed.
Since integration over products of up to six elements of a rotational matrix
areinvolved, theeffort forperforming theaveraging is high. To minimize
the computational burden, rules for evaluating the integrals will be given
in this communication. Application to average polarizability-tensors are
presented.

1. lNTRODUcT[ON

Forcalculating theeffective electric properties ofachiral medium
from the knowledge of the behavior of a single element, several
Imethods have been applied In the past. Among them one finds
the use of the chiral Lorenz–Lorentz formulas [1]–[4] as developed
by Slhvola and Llndell [5]. scidterlng ~pproaches based on the
vector radiative transfer equation (VRTE) [3], or purely numerical
techmques [6]. In JII of these methods averaging procedures are

needed m order to extract the effective parameters of the random
medium under consideration.

Applying the Lorenz–Lorentz formulas, where the ensemble is

approximated as a homogeneous medium, requires the chiral particles
to be modeled as small dipoles. In general, the underlying polariz-
abilltles of nonspherical particles are tensor-quantities that describe

the electric, magnetic, and magnetoelectric (cross) coupling [7]. For
randcrmly oriented anddistrlbuted particles, these rwedtobeaveraged
m order to calculate the cffectlve behavior of the ensemble.

The VRTE, based on the concept of generdizwi Stokes parameters,
was developed to describe the effective homogeneous and inhomo-
geneous scattering of sparse ensembles of small ptirticles [8]. The
coefficients of the VRTE. i.e.. the so-called e~tmction and phase
matrices, can be calculated from the scattering matrix of a single
particle, which follows direcdyf romthep oktrizabilities [3].

In both cases, averages with respect to the different orientations

of the scatterers that aredescrlbed by the EulerIan matrix need to be
evaluated. To obtain the extinction and the phase matrix for ensembles
of ch}ral scatterers up to third- dnd sixth-order combinations of
elements of the rotation matrix have to be averaged, respectively.
whereas the average polarizabilities Involve up to third-order com-
binations.

In this paper wc will indicate the rules for up-to-sixth-order combi-
nations. The extinction and phase matrices can then be calculatedly

employing the rtdes developed here [3], [8]. Here, the application of
these rules will be.demonstrated with two simple examples, namely

the calculation of avertige polarlzabllitles.
To our knowledge this is the first comprehensive publication of

the development of these rules.

11. POLARIZABILITIESOF ARBRITRARILY ORIENTED ELEMENTS

Twocoordmate systems need to beconsldered. Themcldent wave
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is defined with respect to the lab-system, indicated by a prime (’).
whereas a single particle is described in a local system. The two
systems can be transformed mto each other by means of the Eulenan

matrix ~ [8], which performs a change of basis and thus allows to

calculate the scattering properties of a particle with a given orientation
from those of an identicdl. but differently oriented, element.

Within the well-known dipole approxlmatlon, valid for particles
much smaller than the wavelength in the respective far-fields, the
electrlc behavior of a single particle can be expressed by electric,
magnetic and magnetoelectric (cross-) polarlzabilitles. In the local
coordinate system the dipole moments of a single, small chiral
element is given by

whel-e 17 and rii are the electrlc and magnetic dipole moments and

~,, denote thepolarizability tensors. Thetirst subscript refers to the
effect md the second to the origin of the moment. Here, both the
electrlc and the magnetic excitation are expressed by the incident
electric field ~“” and, implicitly, the direction of incidence ~’”(.

Once the polarizabilities of a scatterer are known for a given angle

of mcldence of the incoming wave, those of tilted but otherwise
identical elements directly follow from them and from the knowledge
of the rotation relative to the excitation Mathematically, thn corre-

sponds to a rotation of the local coordlnttte system with respect to a
reference orientation, which is defined in the lab coordinate system.
Thus, the polarlzabdities of tilted scatterers can be obtained from

when the electric field is the origin Since the magnetically induced
polarizations depend on the propagation direction of the incident
wave, which is fixed with respect to the lab system, the transfor-
mations become more complicated in this case

Here, ~l,,, follows from the usual polarizability via

7/,,, (i’’”) = g i“”

(4)

(5)

where the matrix vector %,,,, has been introduced. It is a three-
dirnensional vector with 3x3 matrices a~ elements. The dot-product
with a vector IS then a mtrltipl~cation of each element with the
respective submatrix. The notation of the sc&r element n,,rl(, kl)
1s as follows: ,) denotes the vector element, whereas /i/ is the usual
matrix notation within the submatrix.

III. ORIENTATIONAL AVERAGING

Now. the average polarizabilities can be determined. Averaging
over all possible orientations of an orientation-dependent matrix ~
requires the integral

to be solved
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Here, a,,d, and~describe theangles ofrotation between the lab

and the local system, while ~(~, /3, T) is the probability density
function for the orientations. In the following it is set to unity,

assuming a uniform distribution of all orientations. When applying
(6) to the polarizabilities, it is clear from (3) and (4) that products of
at most three elements of the Eulerian matrix need to be averaged.
Theextinction andthephase matrices of the VRTE, in turn, would
involve products of up to six elements.

Even though the integrals arising from (6) can in general be
calculated numerically, this cannot be done economically for the aris-
inghigh-order products. Therefore, we shall find vanishing integrals

analytically andeliminate therefrom the calculation. The remaining
combinations can easily be calculated and tabulated in rules.

The Eulerian matrix is defined by

3= {a, J} L,J=l,2,3. (7)

A
Here a, ~ is a short-hand notation for the dot product d, . bj, where
a, and ~j (L, j = 1, 2. 3) are the basis vectors of the local and the

lab system, respectively.
Depending on their order, the combinations of these elements will

lead to different rules that will be derived next. For the logical
operations we have used the following symbols: A stands for AND, V
for OR, and @ for XOR. We shall start with order two and observe

that the identity

a,Jakt = ;[cos(A +))+ cos(A– p)] (8)

holds. Here, A and H are the angles between the vectors of each
considered pair

fl,j = COS(A) (9)

a~l = cos (p). (lo)

They are determined by the relative orientations a, /3, and -y of the
two coordinate systems, and therefore a ,J, a M can be expressed in

terms of these angles. It can then be shown that the integral (6) will
vanish if A # V, that is i # k V j # 1. In all other cases the integral
can be calculated and is found to be ~. This result can be expressed

as the first rule.
Rule 2:

(Ia,jakt) =
{

~ ifi=k Aj=l,
O otherwise.

(11)

In order to find the average of three elements of the Eulerian matrix
we can write

aLJa~~amn =I~[COS(A+/l+U) +cOS(J+fl– ~)

+cOs(,J -p+v)+cOs(–A+p– v)] (12)

where, again, A, p. and u are the angles between the vectors of the
respective pairs. The mean value of this expression does not vanish

only if one of the cosine terms is constant for all angles a, /3, and
~. This is the casa if all the dot products involve mutually different

basis vectors of the systems. Notice there are never two constant terms
within the same con~tellation. Computing the nonzero term~ yields

Rule 3:

{

1
z i#k#m Aj#l#n

A j. 1, n increasing,
(a,,a~ln’p,~)= -$ i#k#m Aj#l#n (13)

A j. 1, n decreasing,
o otherwise

where i < k < m holds. As can be seen, the sense (left or right) of

the connection between the two coordinate systems is important.
The following higher order combinations can always be reduced

to the two basic rules developed above. This leads to the following.
Rule 4:

(a$,) =*,

(a,Ja~lan,naoP) = Oin the remaining cases.

Rule 5:

(afj) =0,

(a$jako =0.

(a~jak,amn) = ~ (a,jaklantn)

i#k, mVj#l, n,

(a?,ak~annaop) = * (akfantnaop)

i#k, m,o Vj#l, n,p.

(at~a~/a~~a.Pa,,) = O in the remaining cases.

In the third and fourth cases Rule 3 applies.
Rule 6:

(afJf7~l) =
{

& i=k~j=l,

& i#k Aj #l,’

(14)

(15)

(16)

The numbers above denote:

1)

2)

3)

4)

In

All the subscripts in one position are equal: (i = !s = m A j #

1 # n) @ (i # k # m A.i = 1 = n). Thus, the expression is
of the form afj a~la~m or afj a~Ja~J.

The combinations have pairwise one subscript at the same
position in common, and are expressions of the form a~3a~(a~.{,

i#.k Aj #l.

Only one pair of the combinations has one subscript at the same
position in common, and the expressions are, for instance, of
the form af,a~la~n, i # m A j # 1 # n.

All subscripts at the same position are unequal, and the

exPressions are of the form atJddt. with j # ~ # m A j #
l+n.

the fourth and fifth cases we only consider pairwise unequal
subscript doublets. The other combinations either are included in-the
previous cases or will lead to zero (in the last case). The sets SI and
S, are the ordered permutations of the subscript pairs. the parenthesis

(... ) denoting ordered sets:

● For the fourth case let

.W = {([kl], [inn], [op], [gr])},

then S1 = {[(b. c), (d, e)]lb, c E If

Ad. eE.kf\{b. c} Ab#c Ad #e}. (17)
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I All subscript pairs are equal <a~J >= +

Onepair occurs 4 times, one Yes

occurs twice

Every subscript pair occurs

twice -

AH coordinates {1,2,3} occur

twice at every subscript posi-

tion m

1Yes

One subscript pair occurs Yes *&

twice

(--4?-?
\ /

Fig, 1, Decision tree for Rule 6,

* For the fifth case let

.\I={([ij]i [Ll],[rnn]. [op], [qr], [sf])},

then SZ= {[(b, r. d), (e, j“, g)]lb, c.d E,!f

Ae. f.~CM\{fr. c.d}

Ab#c#d Ap#f #g}. (18)

Again, in these cases the averages require the use of Rule 3, which
also determines the sign.

Rule 6 can be expressed more easily in a decision tree as shown

in Fig. 1,

IV. APPLICATIONTO THE POLARIZABILITIES

The rules for averaging the elements of the Eulerian matrix in
combinations of different orders have been stated above, Let us
now examine two simple cases and use the results to average the
polarizability tensors. From (3) we obtain

This i~ the well-known result for the orientational average of a tensor

of rank two with respect to a uniform distribution of orientations.
For the polarizability with magnetic origin Rule 3 applies and leads
together with (4) to

+ rk, n7(z,31) + otm(312) – flL,n1321)]

~ Z’nc x JP’r. (20)

parameters of a chiral medium that consmts of chiral elements
randomly dispersed in a nonchiral host medium [1]–[4].

V. CONCLUSION

Rules for orientational averages as they are encountered in calcu-

lations of effective material parameters with, e.g , mixing formulas
or the vector radiative transfer equation have been presented. Since
for the (cross-)polarizabilities with magnetic origin higher-order
combinations of the Eulerian matrix elements are involved, the
averaging integral in (6) cannot be solved efficiently by numerical
or straight-forward analytical methods. Fast solutions for up to sixth-
order combinations have been formulated in form of rules, Applying
these significantly reduces computing time and memory space when
calculating the average behawor of chiral particles. The cases shown
as examples are important, when the effective parameters of a chiral
medium are calculated from the Lorenz–Lorentz formulas. Of course,
the rules presented here also apply to nonchiral scatterers.

Note: Just as our paper was going to press, we became aware
of [9] and [10]. Several results obtained by us also appear in these
papers, although in a different context, as well as in notation largely
unfamiliar to the microwave community.
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This shows that the magnetic polarizabilities basically reveal the

structure of a vector product with the direction of the incident field,
as expected, Together with the Lorenz–Lorentz formulas for chiral
media [5], it can be employed to calculate the effective material


